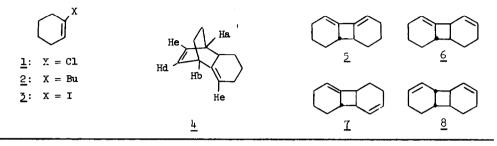
HYDROCARBONS FROM REACTIONS OF 1-HALOCYCLOHEXENES WITH POTASSIUM <u>t</u>-BUTOXIDE. ADDITIONAL EVIDENCE FOR THE INTERMEDIACY OF 1,2-CYCLOHEXADIENE A. T. Bottini, F. P. Corson, R. Fitzgerald, and K. A. Frost, Jr. Department of Chemistry, University of California, Davis, California 95616

(Received in USA 23 September 1970; received in UK for publication 26 October 1970)

Treatment of a 1-halocyclohexene (1-2) with KO-t-Bu in DMSO gives, in addition to a 5-12% yield of 1-t-butoxycyclohexene,¹ a complex mixture of C₆, C₁₂, and higher molecular weight hydrocarbons. Products that have been identified are 1,3- and 1,4-cyclohexadiene, benzene, cyclohexene, phenylcyclohexane, and the tricyclic dienes 4-7. A minor product, which was always observed in a 1:10 ratio with 4 and is believed to be its diastereomer, has not yet been positively identified.


The arrangement of the carbon skeleton of $\frac{1}{4}$ (m/e 160) was established by hydrogenation over Pd/C to a product identical with that obtained from hydrogenation of the Diels-Alder dimers of 1,3-cyclohexadiene,² and the position of the double bonds in $\frac{1}{4}$ was determined by analysis of its 100-MHz mmr spectrum: δ 1.0-2.2 (11H,m), 2.38 (Ha,m), 2.88 (Hb,m), 5.23 (Hc, m, $w_{\Xi} = 7$ Hz), 6.14 (Hd, $J_{ad} = 1.6$, $J_{bd} = 6.0$, $J_{de} = 8.3$ Hz), and 6.30 ppm (He, $J_{ae} = 6.0$, $J_{be} = 1.6$ Hz).

The structure of oxygen-sensitive $\underline{5}$, mp 53-55°, lit ³ mp 53-54°, has been established by Wittig and Fritze.³ Hydrogenation of $\underline{5}$ over Pd/C gave two products, both with m/e 164, in near equal amounts. One of these products was identical with the single hydrogenation product from $\underline{8}$, the major photodimer of 1,3-cyclohexadiene.² The hydrogenation results indicate that the cyclobutane hydrogens in $\underline{5}$ are trans.⁴

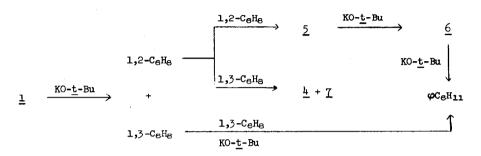
Our identification of $\underline{6}$ and $\underline{7}$ is based on their mass spectra (m/e 160), their hydrogenation to the hydrogenation product from $\underline{8}$, and comparison of their very similar mmr spectra [$\underline{6}$: δ 5.18 (1H, $w_{\overline{2}}^2 = 7$ Hz), 5.62 ppm (2H, $w_{\overline{2}}^2 = 4$ Hz); $\underline{7}$: δ 5.23 (1H, $w_{\overline{2}}^2 = 7$ Hz), 5.76 ppm (2H, $w_{\overline{2}}^2 = 4$ Hz)] with those of 5 [δ 5.23 ($w_{\overline{2}}^2 = 7$ Hz)], and <u>8</u> [δ 5.72 ppm (4H, $w_{\overline{2}}^2 = 4$ Hz)].

In the presence of excess KO-<u>t</u>-Bu, 5 and <u>6</u> were found to be unstable. On treatment with 1.1 equiv of KO-<u>t</u>-Bu-HO-<u>t</u>-Bu in DMSO at 65° for 2 hr, <u>5</u> gave considerable high molecular weight material and an 18% yield of isomers consisting of 70% <u>6</u> and 30% phenylcyclohexane.

In Table I are summarized the yields of C_6 and C_{12} hydrocarbons obtained from the halocyclohexenes when treated with 1.1 equiv of KO-<u>t</u>-Bu·HO-<u>t</u>-Bu in DMSO at 65°. These conditions gave the highest yields of C_{12} hydrocarbons, but the yields of C_6 hydrocarbons were much less than those obtained when 1.1 or more equiv of uncomplexed KO-t-Bu was used. However, the composition data for the C_8 hydrocarbons are representative for runs made under more or less vigorous conditions in that the 1,3-: 1,4-cyclohexadiene ratio was essentially constant at <u>ca</u> 2.2,⁵ the yields of benzene and cyclohexene were nearly identical, and the yields always increased as halogen was changed from iodine to bromine to chlorine.

Table I: C_6 and C_{12} -Hydrocarbons from Halocyclohexenes $\frac{a}{2}$ yield, $\frac{b}{2}$									
	yield, %-								
Halocyclohexene	1,3-C ₆ H ₈	1,4-C ₆ H ₈	$oldsymbol{arphi}$ H	C_6H_{10}	<u>4</u>	<u>5</u>	<u>6</u>	ĩ	$\varphi C_6 H_{11}$
<u>1</u>	14.5	6.6	3.7	3.4	9.4	<1	6	4	2
<u>2</u>	2.3	1.0	0.8	0.8	2	14	6	l	trace
<u>3</u>	1.4	0.6	0.2	0.2	2	32	3	l	

^a At 65° under nitrogen for 30, 3.2, and 2 hr, respectively, for <u>1</u>, <u>2</u>, and <u>3</u>. Initial concentrations in DMSO: halocyclohexene, 0.69M; KO-<u>t</u>-Bu·HO-<u>t</u>-Bu, 0.76M. ^b Yields of C₆ and C₁₂ hydrocarbons were estimated by vpc and mmr analysis of the distillation fractions with bp 35-90° and 50-110°/0.5 mm. The lower-boiling fraction contained >90% of the HO-<u>t</u>-Bu. Isolated yields of <u>1-t</u>-butoxycyclohexene were 9-10%. Also obtained were sizable pot residues, which accounted for 30-45% of the halocyclohexene based on complete dehydrohalogenation.


The most likely origin of the C₆ hydrocarbons is prototropic rearrangement of <u>1</u>, <u>2</u>, or <u>3</u> to the corresponding 3-halocyclohexene,⁶ followed by dehydrohalogenation to 1,3-cyclohexadiene. Under the reaction conditions, the 1,3-diene equilibrates with its 1,4-isomer,^{5,7} disproportionates to benzene and cyclohexene,⁷ and dimerizes slowly to phenylcyclohexane.⁸

Change of halogen from chlorine to bromine and iodine resulted in a dramatic increase (from < 1% to 32%) in yield of 5 and decreases in the yields of 4, 6, 7, and phenylcyclohexane. Competitive experiments followed by vpc showed that 5 is destroyed more rapidly than 1-chlorocyclohexene (1) by KO-t-Bu in DMSO. Thus, the near absence of 5 in the product mixture from 1 does

not necessarily mean that very little $\underline{5}$ was formed in the reaction. As $\underline{1}$ gave a 6% yield of $\underline{6}$, which does not appear to be a primary product (see below) but which is formed from $\underline{5}$ under the reaction conditions, it seems likely that a significant amount of $\underline{1}$ was converted to $\underline{5}$. Similarly, it can be argued that considerably more than 14% of $\underline{2}$ was converted to $\underline{5}$.

What we believe to be the important pathways to the C_{12} hydrocarbons are summarized in Scheme I.

```
Scheme I
```


In 1966, Wittig and Fritze reported the isolation of 5 in 7% yield from the reaction of 1bromocyclohexene (2) and KO-t-Bu in DMSO,³ and they proposed that 5 was formed by dimerization of 1,2-cyclohexadiene. We found that 5 obtained from 1-iodocyclohexene-2,6,6-d₉ contained no protium at the vinyl carbons (absence of signal at δ 5.23). This finding gives support to Wittig and Fritze's proposed mechanism, shows that little if any 1,2-cyclohexadiene arises by prototropic rearrangement of cyclohexyne (<u>cf</u>. ref. 3), and allows us to rule out several alternative but less direct mechanisms involving cyclohexyne or halocyclohexenyl anions.

The amounts of $\frac{1}{4}$ and $\frac{7}{1}$ obtained from 1-chlorocyclohexene (<u>1</u>) were increased fivefold when <u>1</u> was treated with 1.1 equiv of KO-<u>t</u>-Bu·HO-<u>t</u>-Bu in DMSO containing 3 1,3-cyclohexadienes/<u>1</u>. This indicates that $\frac{1}{4}$ and $\frac{7}{1}$ are formed by competing 1,4- and 1,2-cycloadditions of 1,2-cyclohexadiene with its 1,3-isomer. Significantly, no trace of $\frac{5}{2}$ or $\frac{6}{2}$ was observed in the product mixture from the reaction of <u>1</u> with added 1,3-cyclohexadiene. Evidently, the <u>6</u> obtained from reaction mixtures with no added 1,3-cyclohexadiene is formed by KO-<u>t</u>-Bu induced rearrangement of <u>5</u> rather than an alternative 1,2-cycloaddition of 1,2- and 1,3-cyclohexadiene.

The phenylcyclohexane obtained from 1-chloro- and 1-bromocyclohexene could be formed by rearrangement of 5 or dimerization of 1,3-cyclohexadiene or, more likely, by both of these pathways.

In contrast to its importance as an intermediate in the formation of 1-t-butoxycyclohexene from the 1-halocyclohexenes in DMSO,¹ cyclohexyne is not involved in the formation of the

accompanying C_{12} hydrocarbons. Thus, the role of 1,2-cyclohexadiene as an intermediate in these reactions with KO-<u>t</u>-Bu proves to be much greater than was indicated by our study of the mechanism of 1-t-butoxycyclohexene fromation.

As evidenced by its reactions, particularly when generated rapidly from 1-bromo- or 1-iodocyclohexene, the highly strained 1,2-cyclohexadiene is a remarkably selective reagent. Although an estimate is difficult, it seems likely that the maximum concentration of 1,2-cyclohexadiene during these reactions is extremely small. Therefore, the rate constant for $1,2-C_{\rm G}H_{\rm G}$ + 1,2- $C_{\rm G}H_{\rm G}$ + 5 must be orders of magnitude greater than the rate constant for the reaction of 1,2-cyclohexadiene with its 1,3-isomer, <u>t</u>-butoxide ion, or <u>t</u>-butyl alcohol.

<u>Acknowledgments</u>.--This research was supported in part by Grants GM-10606 and CA-10740 from the US Public Health Service. Availability of the mass spectrometer was made possible by a grant from the National Science Foundation. We wish to thank Professor G. E. Maciel for determination of the 100-MHz mmr spectra and Mr. J. Woth for determination of the mass spectra. We are grateful to Professors W. H. Fink and H. E. Zimmerman for stimulating discussions.

References and Notes

- (1) A. T. Bottini, F. P. Corson, R. Fitzgerald, and K. A. Frost, Jr., accompanying paper.
- (2) D. Valentine, N. J. Turro, Jr., and G. S. Hammond, J. Amer. Chem. Soc., 86, 5202 (1964).
- (3) G. Wittig and P. Fritze, Angew. Chem., 78, 905 (1966); Ann., 711, 82 (1968).
- (4) On the basis of other evidence, W. R. Moore and W. R. Moser [J. Org. Chem., 35, 908 (1970)] assigned the trans configuration to 5. They obtained 5 from the reaction of 6,6-dibromobicyclo[3.1.0]hexane with methyllithium.
- (5) R. B. Bates, R. H. Carnighan, and C. E. Staples [J. <u>Amer. Chem. Soc.</u>, <u>85</u>, 3030 (1963)] have reported that equilibration of the cyclohexadienes with KO-<u>t</u>-Am in HO-<u>t</u>-Am gives a 68.9:31.1 mixture of the 1,3- and 1,4-isomers.
- (6) A similar prototropic rearrangement appears to be the first step in the conversion of 2chloro- or 2-bromo-3-(2-hydroxyethoxy)cyclohexene to <u>cis</u>-2,5-dioxabicyclo[4.4.0]-dec-7-ene effected by KO-<u>t</u>-Bu in DMSO. See A. T. Bottini and W. Schear, J. <u>Amer. Chem. Soc.</u>, <u>87</u>, 5802 (1965).
- (7) J. E. Hofmann, P. A. Argabright, and A. Schriesheim, <u>Tetrahedron</u> Letters, No. 17, 1005 (1964).
- (8) F. P. Corson, Ph.D. Thesis, University of California, Davis, 1967. See <u>Diss</u>. <u>Abstr.</u>, 29, 934 (1968).